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Abstract
The position and momentum operators of the q-oscillator (with the main relation
aa+ − qa+a = 1) are symmetric but not self-adjoint if q > 1. They have
one-parameter family of self-adjoint extensions. These extensions are given
explicitly. Their spectra and eigenfunctions are derived. Spectra of different
extensions do not intersect. The results show that the creation and annihilation
operators a+ and a of the q-oscillator at q > 1 cannot determine a physical
system without further more precise definition. In order to determine a physical
system we have to choose appropriate self-adjoint extensions of the position
and momentum operators.

PACS numbers: 02.10.Tq, 02.30.Gp, 02.30.Tb, 03.65.Dp

1. Introduction

A q-deformation of the quantum harmonic oscillator was introduced in [1–4]. There exist
several variants of the q-oscillator. They are obtained from each other by some transformation
(see [5]). One of the main problems for different forms of the q-oscillator is a form of spectra
of the main operators, such as Hamiltonian, position and momentum operators. There is no
problem with a spectrum of the Hamiltonian H = 1

2 (aa+ + a+a). But in some cases there are
difficulties with spectra of position and momentum operators (see, e.g., [6–8]). It was shown
that if the position operator Q = a+ + a (or the momentum operator P = i(a+ − a)) is not
bounded, then this symmetric operator is not essentially self-adjoint (see [6]). Moreover, in
this case it has deficiency indices (1, 1), that is, it has a one-parameter family of self-adjoint
extensions. Finding of self-adjoint extensions of a closed symmetric (but not self-adjoint)
operator is a complicated problem. But we need to know self-adjoint extensions in order to
be able to find their spectra (it does not make sense to talk about spectra of the operators Q
and P if they are not self-adjoint).
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The main aim of this paper is to study self-adjoint extensions of the position and
momentum operators Q and P for the q-oscillator with the main relation

aa+ − qa+a = 1

when q > 1. For these values of q the operators Q and P are unbounded and not essentially
self-adjoint (for q < 1, these operators are bounded and, therefore, self-adjoint; they are
studied in [7]). The operators Q and P can be represented in an appropriate basis by a
Jacobi matrix. This means that they can be studied by means of properties of q-orthogonal
polynomials associated with them. These q-orthogonal polynomials are expressed in terms of
q−1-continuous Hermite polynomials hn(x|q) introduced by Askey [9]. These polynomials
correspond to an indeterminate moment problem and, therefore, are orthogonal with respect
to infinitely many positive measures. Using orthogonality measures for these polynomials we
shall find spectra of self-adjoint extensions of the operators Q and P. As we shall see, different
self-adjoint extensions have different spectra.

For this reason we may make the following conclusion: the creation and annihilation
operators a+ and a of the q-oscillator at q > 1 do not determine uniquely a physical system.
In order to fix a physical system we have to choose appropriate self-adjoint extensions of
the position and momentum operators. This conclusion must be taken into account under
applications of q-oscillators with q > 1 (e.g., under studying q-bose gas or under application
in quantum field theory). We cannot operate with the creation and annihilation operators as
freely as in the case of the usual quantum harmonic oscillator.

As far as we know the self-adjoint extensions found in this paper is the first example of
all such extensions being found for a symmetric operator in an explicit form.

Below we use (without additional explanation) notations of the theory of q-special
functions (see [10]). In order to study the position and momentum operators Q and P we
shall need the results on Jacobi matrices, orthogonal polynomials and symmetric operators
representable by a Jacobi matrix. In the next section, we give a combined exposition of some
results on this connection from the books [11], chapter VII, [12] and from the paper [13] in a
form appropriate for use below, and some consequences of them.

2. Jacobi matrices, orthogonal polynomials and moment problem

Operators, studied in this paper, are symmetric operators, representable by a Jacobi matrix.
By a symmetric Jacobi matrix we mean a (finite or infinite) symmetric matrix of the form

M =




b0 a0 0 0 0 · · ·
a0 b1 a1 0 0 · · ·
0 a1 b2 a2 0 · · ·
0 0 a2 b3 a3 · · ·

· · · · · · · · · · · · · · · · · ·


 . (1)

We assume that ai �= 0, i = 0, 1, 2, . . . . Let L be a closed symmetric operator on a Hilbert
space V , representable in some basis by a Jacobi matrix M. Then there exists an orthonormal
basis en, n = 0, 1, 2, . . . , of V such that

Len = anen+1 + bnen + an−1en−1,

where e−1 ≡ 0. Let |x〉 = ∑∞
n=0 pn(x)en be an eigenvector of L with an eigenvalue

x, L|x〉 = x|x〉. Then

L|x〉 =
∞∑

n=0

[pn(x)anen+1 + pn(x)bnen + pn(x)an−1en−1] = x

∞∑
n=0

pn(x)en.
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Equating coefficients of the vector en, one comes to a recurrence relation for the coefficients
pn(x):

anpn+1(x) + bnpn(x) + an−1pn−1(x) = xpn(x). (2)

Since p−1(x) = 0, by setting p0(x) ≡ 1 we see that this relation recursively determines the
coefficients pn(x). Moreover, a recurrence computation of pn(x) shows that these coefficients
pn(x) are polynomials in x of degrees n, respectively. Since the coefficients an and bn are
real (because the operator L is symmetric), all coefficients of the polynomials pn(x) are real.
Therefore conditions of Favard’s characterization theorem (see, e.g., [14]) for the polynomials
pn(x) are satisfied because in the case under discussion they simply reduce to the inequalities
a2

n > 0 n = 0, 1, 2, . . . . This means that these polynomials are orthogonal with respect to
some positive measure µ(x) (which may be concentrated on a countable set of points).

It is known that orthogonal polynomials admit orthogonality with respect to either unique
positive measure or with respect to infinitely many positive measures. One says that in the
first case the polynomials correspond to the determinate moment problem and in the second
case to the indeterminate (Hamburger) moment problem.

The polynomials pn(x) are very important for studying properties of the closed symmetric
operator L. Namely, the following statements are true:

I. If the polynomials pn(x) are orthogonal with respect to a unique orthogonality
measure µ, ∫

pm(x)pn(x) dµ(x) = hnδmn, hn > 0,

where the integration is performed over some subset (possibly discrete) of R, then the closed
operator L is self-adjoint. Moreover, a spectrum of the operator L is simple and coincides
with the set, on which the polynomials pn(x) are orthogonal (recall that we assume that all
numbers an are non-vanishing). The measure µ(x) determines the spectral measure for the
operator L (for details see [11], chapter VII).

II. Let the polynomials pn(x) be orthogonal with respect to infinitely many orthogonality
measures µ. Then a closed symmetric operator L is not self-adjoint and has deficiency indices
(1, 1), that is, it has infinitely many (in fact, a one-parameter family of) self-adjoint extensions.
It is known that among orthogonality measures, with respect to which the polynomials
are orthogonal, there are so-called extremal measures (that is, such measures that a set of
polynomials {pn(x)} is complete in the Hilbert space L2 with respect to the corresponding
orthogonality measure). These measures uniquely determine self-adjoint extensions of the
symmetric operator L. There exists a one-to-one correspondence between essentially different
extremal orthogonality measures and self-adjoint extensions of the operator L. The extremal
orthogonality measures determine spectra of the corresponding self-adjoint extensions. A
spectrum of an self-adjoint extension coincides with the set on which the corresponding
orthogonality measure is concentrated.

The inverse statements are also true:
I′. Let the operator L be self-adjoint. Then the corresponding polynomials pn(x) are

orthogonal with respect to a unique orthogonality measure µ,∫
pm(x)pn(x) dµ(x) = hnδmn, hn > 0,

where the integral is taken over some subset (possibly discrete) of R. Moreover, a measure µ

is uniquely determined by a spectrum of L (for details see [11], chapter VII).
II′. Let the closed symmetric operator L be not self-adjoint. Since it is representable

by a Jacobi matrix (1) with an �= 0, n = 0, 1, 2, . . . , it admits a one-parameter family of
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self-adjoint extensions. Then the polynomials pn(x) are orthogonal with respect to infinitely
many orthogonality measures µ. Moreover, spectral measures of self-adjoint extensions of L
determine extremal orthogonality measures for the polynomials {pn(x)} (a set of polynomials
{pn(x)} is complete in the Hilbert spaces L2(µ) with respect to the corresponding measures µ).

To a set of orthogonal polynomials pn(x), n = 0, 1, 2, . . . , associated with an
indeterminate (Hamburger) moment problem, there uniquely correspond four entire functions
A(z), B(z), C(z), D(z), which are related to appropriate orthogonality measures µ by the
formula

F(z) ≡ A(z) − σ(z)C(z)

B(z) − σ(z)D(z)
=

∫ ∞

−∞

dµ(t)

z − t
(3)

(see, e.g., [12]), where σ(z) is any analytic function. Moreover, to each analytic function
σ(z) (including constants and σ = ±∞) there corresponds a single orthogonality measure
µσ (z) and, conversely, to each orthogonality measure µ there corresponds an analytic function
σ such that formula (3) holds. There exists the Stieltjes inversion formula, which converts
formula (3) (see [12]).

Thus, orthogonality measures for a given set of polynomials pn(x), n = 0, 1, 2, . . . , in
principle, can be found. However, it is very difficult to evaluate the functions A(z), B(z),
C(z),D(z). In [15] they are evaluated for a particular example of polynomials, namely, for
the q−1-continuous Hermite polynomials hn(x|q).

The set of extremal measures coincides with the set of the measures µ(t) ≡ µσ (t),
corresponding to constants σ (including σ = ±∞). All other orthogonality measures are not
extremal. Extremal orthogonality measures have the following properties.

(a) If µσ (x) is an extremal measure, corresponding (according to formula (3)) to a number
σ , then µσ (x) is a step function. A spectrum of µσ (x) (that is, the set on which this
measure is concentrated) coincides with the set of zeros of the denominator B(z)−σD(z)

from (3). The mass, concentrated in a spectral point xj (that is, a jump of µσ (x) in the

point xj ), is equal to
( ∑∞

n=0 |pn(xj )|2
)−1

.
(b) Spectra of extremal measures are real and simple.
(c) Spectral points of two different extremal measures µσ (x) and µσ ′(x) are mutually

separated.
(d) For a given real number x0, there exists a (unique) real number σ , such that the measure

µσ (x) has x0 as its spectral point. The points of spectrum of µσ (x) are analytic monotonic
functions of σ .

Since spectra of self-adjoint extensions of the operator L coincide with the spectra of
the corresponding extremal orthogonal measures for the polynomials pn(x), then properties
(a)–(d) can be formulated for spectra of these self-adjoint extensions:

(a′) Spectra of self-adjoint extensions of L are discrete.
(b′) Self-adjoint extensions of L have simple spectra, that is, spectral points are not multiple.
(c′) Spectra of two different self-adjoint extensions of L are mutually separated.
(d′) For a given real number x0, there exists a (unique) self-adjoint extension Lext such that

x0 is a spectral point of Lext.

3. The q-oscillator

A q-deformation of the quantum harmonic oscillator was given in [1, 2]. In 1989, Biedenharn
[3] and Macfarlane [4] defined the q-oscillator in more exact form. For our definition of the
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q-oscillator we use the following relations:

aa+ − qa+a = 1, [N, a+] = a+, [N, a] = −a (4)

for the creation and annihilation operators a+, a and for the number operator N.
The Fock representation of this q-oscillator acts on the Hilbert space H with the

orthonormal basis |n〉, n = 0, 1, 2, . . . , and is given by the formulae

a|n〉 = {n}1/2
q |n − 1〉, a+|n〉 = {n + 1}1/2

q |n + 1〉, N |n〉 = n|n〉, (5)

where

{n}q := qn − 1

q − 1
.

We shall use the following functional realization of the Hilbert space H. Let P be the
space of all polynomials in a real variable y. We introduce in P a scalar product such that the
monomials

en ≡ en(y) := (−1)n/2

(q; q)
1/2
n

yn, (6)

where (b; q)n := (1 − b)(1 − bq) · · · (1 − bqn−1), constitute an orthonormal basis of P . The
orthonormality of this basis gives a scalar product in P . We close the space P with respect to
this scalar product and obtain a Hilbert space which can be considered as a realization of the
Hilbert space H. The operators a+ and a are realized on this space as

a+ = (q − 1)−1/2y, a = (q − 1)1/2Dq,

where Dq is the q-derivative determined by

Dqf (y) = f (qy) − f (y)

(q − 1)y
.

Then operators a+ and a act upon the basis elements (6) by formulae (5). Everywhere below
we assume that H is the Hilbert space of functions in y, introduced above.

We are interested in the position and momentum operators

Q = a+ + a, P = i(a+ − a)

of the q-oscillator (4). We have the formulae

Qen = {n}1/2
q en−1 + {n + 1}1/2

q en+1, (7)

Pen = i{n}1/2
q en−1 − i{n + 1}1/2

q en+1, (8)

which follow from (5). It is clear from these formulae that Q and P are unbounded symmetric
operators. It is known (see, e.g., [6]) that under q > 1 closures of these operators are not
self-adjoint, but each of them has a one-parameter family of self-adjoint extensions. One of
the aims of this paper is to give these self-adjoint extensions.

4. Eigenfunctions of the position operator

We suppose below that q is a fixed real number such that q > 1. We also introduce the notation
q̆ = q−1.

The aim of this section is to derive formulae for eigenfunctions ϕx(y) of the position
operator Q:

Qϕx(y) = xϕx(y).
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Let us show that

ϕx(y) =
∞∏

n=0

(1 + 2yx ′q̆n+1 − y2q̆2n+2), (9)

where x ′ := 1
2 (q − 1)1/2x. Using the definition of the q-derivative Dq we have

Dqϕx(y) = ϕx(qy) − ϕx(y)

y(q − 1)
= 2x ′ − y

q − 1
ϕx(y).

Therefore,

Qϕx(y) =
{

y

(q − 1)1/2
+

2x ′ − y

(q − 1)1/2

}
ϕx(y) = 2x ′

(q − 1)1/2
= xϕx(y)

that is, functions (9) are eigenfunctions of the operator Q.
Let us reduce functions (9) to another form. To do this we note that

1 + 2yx ′q̆n+1 − y2q̆2n+2 = (
1 + q̆nyq̆

(√
1 + x ′2 + x ′))(1 − q̆nyq̆

(√
1 + x ′2 − x ′)).

Thus,

ϕx(y) =
∞∏

n=0

(
1 + q̆nyq̆

(√
1 + x ′2 + x ′))(1 − q̆nyq̆

(√
1 + x ′2 − x ′))

= (−yq̆
(√

1 + x ′2 + x ′); q̆
)
∞

(
yq̆

(√
1 + x ′2 − x ′); q̆

)
∞.

Comparing the right-hand side with the right-hand side in the formula
∞∑

n=0

tnq̆n(n−1)/2

(q̆; q̆)n
hn(y|q̆) = (−t

(√
y2 + 1 + y

); q̆
)
∞

(
t
(√

y2 + 1 − y
); q̆

)
∞

(see formula (2.4) in [15]), giving a generating function for the q−1-Hermite polynomials
hn(x|q̆) defined by

hn(x|q̆) =
n∑

k=0

(−1)kq̆k(k−n)(q̆; q̆)n

(q̆; q̆)k(q̆; q̆)n−k

(√
x2 + 1 + x

)n−2k
,

we conclude that the functions ϕx(y) can be decomposed in the orthogonal polynomials
hn(x

′|q̆). We have

ϕx(y) =
∞∑

n=0

ynq̆n(n+1)/2

(q̆; q̆)n
hn(x

′|q̆). (10)

Taking into account expression (6) for the basis elements en and the formula

(q̆; q̆)n = (−1)n(q; q)nq
−n(n+1)/2, q̆ = q−1,

we derive that

ϕx(y) =
∞∑

n=0

(−1)nyn

(q; q)n
hn(x

′|q̆) =
∞∑

n=0

(−1)n(−1)−n/2en(y)

(q; q)
1/2
n

hn(x
′|q̆)

=
∞∑

n=0

en(y)
(−1)nq̆n(n+1)/4

(q̆; q̆)
1/2
n

hn(x
′|q̆).

Thus, we proved the following decomposition of the eigenfunctions ϕx(y) in the basis elements
(6) of the Hilbert space H:

ϕx(y) =
∞∑

n=0

Pn(x)en(y), (11)
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where the coefficients Pn(x) are given by the formula

Pn(x) = (−1)nq̆n(n+1)/4(q̆; q̆)−1/2
n hn(x

′|q̆), (12)

where, as before, x ′ = 1
2 (q − 1)1/2x.

We have found that eigenfunctions of the position operator Q are given by formula (10).
However, we do not know the spectra of self-adjoint extensions Qext of Q. In order to find these
extensions and their spectra we use assertions of section 2. Namely, since eigenfunctions of Q
are expressed in terms of the basis elements en(y) by formula (11), then self-adjoint extensions
Qext and their spectra are determined by orthogonality relations of the polynomials (12).

5. Spectra of self-adjoint extensions of Q

The polynomials hn(z|q̆), n = 0, 1, 2, . . . , 0 < q̆ < 1, have infinitely many orthogonality
relations. Extremal orthogonality measures are parametrized by a real number b, q̆ � b < 1,
which is related to the parameter σ of section 2 (see [15]). It is shown in [15] that for a fixed
b, the corresponding orthogonality measure is concentrated on the discrete set of points

zr(b) = 1
2 (q̆−rb−1 − bq̆r ), r = 0,±1,±2, . . . , (13)

and the orthogonality relation is given by
∞∑

r=−∞
mrhn(zr(b)|q̆)hn′(zr(b)|q̆) = q̆−n(n+1)/2(q̆; q̆)nδnn′ , (14)

where the weight function mr coincides with

mr = b4r q̆r(2r−1)(1 + b2q̆2r )

(−b2; q̆)∞(−q̆/b2; q̆)∞(q̆; q̆)∞
. (15)

Therefore, the orthogonality relations for the polynomials (12) with extremal
orthogonality measures are given by the same parameter b, q̆ � b < 1, and for fixed b
the measure is concentrated on the discrete set

xr(b) = (q̆−rb−1 − bq̆r )/(q − 1)1/2, r = 0,±1,±2, . . . . (16)

The corresponding orthogonality relation is
∞∑

r=−∞
mrPn(xr(b))Pn′(xr(b)) = δnn′ , (17)

where mr is given by (15).
These orthogonality relations and assertions of section 2 allow us to make the following

conclusions. Self-adjoint extensions Qext
b of the position operator Q are given by the parameter

b, q̆ � b < 1. Moreover, the spectrum of the extension Qext
b coincides with the set of points

xr(b) = (qrb−1 − bq−r )/(q − 1)1/2, r = 0,±1,±2, . . . . (18)

These points coincide with the values of the coordinate of our physical system fixed by the
parameter b. To the eigenvalues (18) there correspond eigenfunctions

ϕxr (b)(y) =
∞∑

n=0

Pn(xr(b))en(y), r = 0,±1,±2, . . . . (19)

It follows from (18) and from assertions of section 2 that

(a) spectra of the self-adjoint extensions Qext
b are discrete and simple;

(b) spectra of two different self-adjoint extensions Qext
b and Qext

b′ , b �= b′, are mutually
separated;
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(c) for a given real number x0 there exists a (unique) self-adjoint extension Qext
b such that x0

is a spectral point of Qext
b .

For a fixed b, eigenfunctions (19) are linearly independent (and, therefore, orthogonal),
since they correspond to different eigenvalues of Qext

b . Since the corresponding orthogonality
measure in (17) is extremal, they constitute a basis of the Hilbert space H. Let us normalize
these basis elements. To do this, we have to multiply each ϕxr (b)(y) by the corresponding
normalization constant:

ϕnorm
xr (b)(y) = cr(b)ϕxr (b)(y), r = 0,±1,±2, . . . .

These functions form an orthonormal basis of H. Since

ϕnorm
xr (b)(y) =

∞∑
n=0

cr(b)Pn(xr(b))en(y)

the matrix (arn), arn = cr(b)Pn(xr(b)), where r = 0,±1,±2, . . . and n = 0, 1, 2, . . . ,

connects two orthonormal bases of the Hilbert space H. Therefore, this matrix is unitary,
that is,

∞∑
r=−∞

|cr(b)|2Pn(xr(b))Pn′(xr(b)) = δnn′ .

Comparing this formula with relation (17) we have cr(b) = m
1/2
r and

ϕnorm
xr (b)(y) = m1/2

r ϕxr (b)(y), r = 0,±1,±2, . . . , (20)

where mr ≡ mr(b) is given by (15).
In order to realize Qext

b as a self-adjoint operator, we construct a one-to-one isometry �

of the Hilbert space H onto the Hilbert space L2
b(mr) of functions F on the set of points (18)

with the scalar product

〈F(xr(b)), F ′(xr(b))〉 =
∞∑

r=−∞
mrF(xr(b))F ′(xr(b)).

It follows from (17) that the polynomials Pn(xr(b)) are orthogonal on the set (18) and constitute
an orthonormal basis of L2

b(mr). For a fixed b, the isometry � is given by the formula

� : H � f → F(xr(b)) := m−1/2
r

〈
f, ϕnorm

xr (b)(y)
〉 ∈ L2

b(mr).

It follows from (20) that

H � en(y) → m−1/2
r

〈
en(y), ϕnorm

xr (b)(y)
〉 = Pn(xr(b)).

This formula shows that � is indeed a one-to-one isometry.
The operator Qext

b acts on L2
b(mr) as the multiplication operator:

Qext
b F (xr) = xr(b)F (xr).

It is known (see [16]) that the multiplication operator is a self-adjoint operator.
The Hilbert space L2

b(mr) is the space of states of our physical system in the coordinate
representation. Since the elements en(y) ∈ H are eigenfunctions of the Hamiltonian H =
1
2 (aa+ + a+a), then Pn(xr) ∈ L̂2

b(mr) are eigenfunctions of the same Hamiltonian if its action
is considered on L2

b(mr).
Recall that for different values of b the sets (18) of values of the coordinate are different.

Therefore, the spaces L2
b(mr) for them are different, since they consist of functions defined on

different sets.
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6. Eigenfunctions and spectra of the momentum operator

By changing the basis {en(y)} by the basis {e′
n(y)}, where e′

n(y) = i−nen(y), we see that the
momentum operator P = i(a+ − a) is given in the last basis by the same formula as the
position operator is given in the basis {en(y)}. This means that the operator P is symmetric,
but is not self-adjoint. Moreover, it has infinitely many (in fact, a one-parameter family of)
self-adjoint extensions.

Eigenfunctions of the momentum operator can be found (by using the basis {e′
n(y)}) in

the same way as in the case of the position operator. For this reason, we give only the results.
Eigenfunctions ξp(y) of the momentum operator P,P ξp(y) = pξp(y), are of the form

ξp(y) =
∞∏

n=0

(1 − 2iyp′q̆n+1 + y2q̆2n+2)

= (
iyq̆

(√
1 + p′2 + p′); q̆

)
∞

(−iyq̆
(√

1 + p′2 − p′); q̆
)
∞,

where p′ := 1
2 (q − 1)1/2p. The function ξp(y) can be decomposed in the q−1-Hermite

polynomials hn(p|q̆):

ξp(y) =
∞∑

n=0

i−nynq̆n(n+1)/2

(q̆; q̆)n
hn(p

′|q̆) =
∞∑

n=0

en(y)
inq̆n(n+1)/4

(q̆; q̆)
1/2
n

hn(x
′|q̆).

Thus, we have the following decomposition of the eigenfunctions ξp(y) in the basis elements
(6) of the Hilbert space H:

ξp(y) =
∞∑

n=0

P̃ n(x)en(y), (21)

where the coefficients P̃ n(x) are given by the formula

P̃ n(x) = inq̆n(n+1)/4

(q̆; q̆)
1/2
n

hn(x
′|q̆).

Using orthogonality relations for the polynomials hn(x
′|q̆), described above, we conclude

that self-adjoint extensions P ext
b of the position operator P are given by the parameter

b, q̆ � b < 1. The spectrum of the extension P ext
b coincides with the set of points

pr(b) = (qrb−1 − bq−r )/(q − 1)1/2, r = 0,±1,±2, . . . . (22)

This set coincides with the set of values of the momentum of our physical system fixed by the
parameter b. To the eigenvalues (22) there correspond eigenfunctions

ξpr (b)(y) =
∞∑

n=0

P̃ n(pr(b))en(y), r = 0,±1,±2, . . . . (23)

It follows from (22) and from assertions of section 2 that

(a) spectra of the self-adjoint extensions P ext
b are discrete and simple;

(b) spectra of two different self-adjoint extensions P ext
b and P ext

b′ , b �= b′, are mutually
separated;

(c) for a given real number p0 there exists a (unique) self-adjoint extension P ext
b such that p0

is a spectral point of P ext
b .
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In the same way as in the case of the position operator we derive that eigenfunctions (23)
constitute a basis of the Hilbert space H. Let us normalize it. To do this, we make the same
reasoning as in section 5, and obtain that the functions

ξ norm
pr (b)(y) = m1/2

r ξpr (b)(y), r = 0,±1,±2, . . . ,

form a normalized basis of H, where mr ≡ mr(b) is given by (15).
In order to realize P ext

b as a self-adjoint operator we again use the reasoning of section 5,
namely, we construct a one-to-one isometry �′ of the Hilbert space H onto the Hilbert space
L̂2

b(mr) of functions F on the set of points (22) with the scalar product

〈F(pr(b)), F ′(pr(b))〉 =
∞∑

r=−∞
mrF(pr(b))F ′(pr(b)).

It follows from (17) that the polynomials P̃ n(pr(b)) are orthogonal and constitute an
orthonormal basis of L̂2

b(mr). For a fixed b, the isometry �′ is given by the formula

�′ : H � f → F(pr(b)) = m−1/2
r

〈
f, ξ norm

pr (b)(y)
〉 ∈ L̂2

b(mr).

It follows from (21) that

H � en(y) → m−1/2
r

〈
en(y), ξ norm

pr (b)(y)
〉 = P̃ n(pr(b)).

This formula shows that �′ is indeed a one-to-one isometry.
The operator P ext

b acts on L̂2
b(mr) as the multiplication operator: P ext

b F (pr(b)) =
pr(b)F (pr(b)) and this operator is self-adjoint.

The Hilbert space L̂2
b(mr) is the space of states of our physical system in the momentum

representation. Since the elements en(y) ∈ H are eigenfunctions of the Hamiltonian
H = 1

2 (aa+ + a+a), then P̃ n(pr(b)) ∈ L̂2
b(mr) are eigenfunctions of the same Hamiltonian if

its action is considered in L̂2
b(mr).

Recall that for different values of b the sets (22) of values of the momentum are different.
Therefore, the spaces L̂2

b(mr) for them are different, since they consist of functions defined on
different sets. Clearly, we may identify L2

b(mr) with L̂2
b(mr).

Our consideration shows that the creation and annihilation operators a+ and a of
section 3 at q > 1 cannot determine a physical system without further indications. Namely, in
order to determine a physical system we have to take appropriate self-adjoint extensions of the
operators Q and P. Thus, the q-oscillator algebra of section 3 in fact determine two-parameter
family of q-oscillators. We denote them by O(b, b′), q̆ � b, b′ < 1, where b and b′ are
determined by Qext

b and P ext
b′ .

7. The related Fourier transforms

It is well known that the Fourier transform gives for the usual quantum harmonic oscillator a
transition from the position space to the momentum space and vice versa. An analogue of the
Fourier transform for the q-oscillator in the case when 0 < q < 1 is derived in [17]. The aim
of this section is to give an analogue of the Fourier transform for the q-oscillator O(b, b′) for
fixed b and b′.

We fix b and b′ from the interval [q̆, 1). Let f ∈ H and

�f = F(xr(b)) ∈ L2
b(mr), �′f = F̂ (pr ′(b′)) ∈ L̂2

b′(mr ′).

We have to find a linear transform F : L̂2
b′(mr ′) → L2

b(mr) such that F F̂ = F . By the
definition of � and �′, one has

F(xr(b)) = m−1/2
r (b)

〈
f, ϕnorm

xr (b)

〉
, F̂ (pr ′(b′)) = m

−1/2
r ′ (b′)

〈
f, ξ norm

pr′ (b′)
〉
.
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It is clear that

ϕnorm
xr (b)(y) =

∞∑
r ′=−∞

〈
ξ norm
pr′ (b′), ϕ

norm
xr (b)

〉
ξ norm
pr′ (b′)(y) =

∞∑
r ′=−∞

Fb′b
r ′r ξ norm

pr′ (b′)(y),

where Fb′b
r ′r = 〈

ξ norm
pr′ (b′), ϕ

norm
xr (b)

〉
. Therefore,

F(xr(b)) = m−1/2
r (b)

∞∑
r ′=−∞

Fb′b
r ′r

〈
f, ξ norm

pr′ (b′)
〉 =

(
mr ′(b′)
mr(b)

)1/2 ∞∑
r ′=−∞

Fb′b
r ′r F̂ (pr ′(b′)). (24)

Thus, an analogue of the Fourier transform for the q-oscillator O(b, b′) is given by the unitary
matrix

(
Fb′b

r ′r
)∞
r ′,r=−∞. For entries of this matrix we have

Fb′b
r ′r = 〈

ξ norm
pr′ (b′), ϕ

norm
xr (b)

〉 = M1/2〈ξpr′ (b
′), ϕxr (b)〉 = M1/2

∞∑
n=0

P̃ n(pr ′(b′))Pn(xr(b))

= M1/2
∞∑

n=0

(−i)nq̆n(n+1)/2

(q̆; q̆)n
hn

(
1

2
(qr ′

b′−1 − q−r ′
b′

)
|q̆)hn

(
1

2
(qrb−1 − q−rb)|q̆

)
,

where M = mr ′(b′)mr(b). In order to sum up the last sum we set

q = eτ , b = eσ , b′ = eσ ′
.

Then
1
2 (qr ′

b′−1 − q−r ′
b′) = sinh(τ r ′ − σ ′), 1

2 (qrb−1 − q−rb) = sinh(τ r − σ).

Taking into account the relation
∞∑

n=0

hn(sinh ξ |q̆)hn(sinh η|q̆)
q̆n(n−1)/2

(q̆; q̆)n
Rn = (−Reξ+η,−Re−ξ−η, Reξ−η, Reη−ξ ; q̆)∞

(R2/q̆; q̆)∞
,

where

(a, b, c, d; q̆)m ≡ (a; q̆)m(b; q̆)m(c; q̆)m(d; q̆)M,

we derive that

Fb′b
r ′r =

(iq̆2 exp(τ (r ′+r)−σ ′−σ),iq̆2 exp(−τ(r ′+r)+σ ′+σ),−iq̆2 exp(τ (r ′−r)+σ ′−σ),−iq̆2 exp(τ (r−r ′)−σ ′+σ); q̆)∞
M−1/2(−q̆3; q̆)∞

.

(25)

Thus, the Fourier transform F ≡ Fb′b, corresponding to the q-oscillator O(b, b′), is given
by formula (24), where the entries of the unitary matrix

(
Fb′b

r ′r
)∞
r ′,r=−∞ are determined by (25).

The inverse transform F−1F = F̂ is given by the inverse matrix
(
Fb′b

r ′r
)−1 ≡ (

Fb′b
r ′r

)∗
.

8. Concluding remarks

We studied the q-oscillator with the main relation aa+ − qa+a = 1 under q > 1. For these
values of q, the position and momentum operators are symmetric but not self-adjoint. Each of
them has a one-parameter family of self-adjoint extensions. We have found these self-adjoint
extensions in an explicit form. These self-adjoint extensions have discrete spectra. Spectra of
different self-adjoint extensions of the position operator do not intersect. The same assertion
is true for the extensions of the momentum operator.
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Our study show that the creation and annihilation operators a+ and a of the q-oscillator
algebra at q > 1 cannot determine a physical system without further more precise definition.
Namely, in order to determine a physical system we have to choose appropriate self-adjoint
extensions of the operators Q and P. This means that the q-oscillator algebra at q > 1 in fact
determine two-parameter family of q-oscillators. These q-oscillators have different spectra of
the position operator and different spectra of the momentum operator.

This conclusion must be taken into account under applications of q-oscillators with q > 1
(e.g., under studying q-bose gas or under application in quantum field theory). We cannot
operate with the creation and annihilation operators as freely as we do in the case of the usual
quantum harmonic oscillator. In a subsequent paper we shall apply the results of this paper
for studying the corresponding q-bose gas.
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